Climate Change Is Disrupting Animals’ Sense of Smell
Crabs and fish werent built for oceans this acidic. This article was originally published by Hakai Magazine . Dungeness crabs hunt by flicking their chemical-detecting antennae to and fro. Sensing the waterthe underwater equivalent of sniffing the airis a well-known strategy for homing in on potential prey. But that timeless tactic appears to be at risk, as new research shows that climate-change-induced ocean acidification seems to cause Dungeness crabs antennae to falter. Researchers at the University of Toronto at Scarborough put Dungeness crabs in water just slightly more acidic than normalconditions that could be widespread in the near future if humans continue to emit a high level of greenhouse gases. They found that the animals need to be exposed to cadaverine, a food-signaling chemical, at a concentration 10 times higher than normal before they registered its presence. And its not just Dungeness crabs that appear to be in trouble. Acidification threatens to deprive a variety of marine species of crucial chemical cues. Research into this phenomenon is still limited, but as the field develops, the scope of the potential consequences is growing clearer. Almost every chemical thats in the sea could be affected, says Jorg Hardege, a chemical ecologist at the University of Hull, in England. Just like on land, where animals smell and taste chemicals to glean vital information, many marine creatures use chemical cues to spot food, locate potential mates, or avoid nearby predators. Chemoreception works because each of these cues is a molecule with a distinct chemical structure and physical shape. But because all of these chemicals are floating around in water, theyre susceptible to a range of chemical reactions. More acidic water, Hardege says, has more positively charged hydrogen ions floating around. Those hydrogen ions can bind to the cue chemicals, changing their shapeand how theyre detected. Hydrogen ions can also bind to the animals chemoreceptors, changing how they sense those chemical cues, Hardege says. Read: Were gambling with the only good oceans in the universe If you think of these chemical cues as a language, Hardege says, its as if words start sounding different while, at the same time, your ears are changing how they hear sound. Unsurprisingly, disrupting an animals ability to detect key chemical cues can alter its behavior. Take the European green crab, for example. One study , co-authored by Hardege, shows that a slight increase in waters acidity can change the shape of chemicals that tell the crabs to fan their eggs with water to provide fresh oxygen and remove waste. Crabs in experimentally acidified water were less sensitive to these cuesthey needed at least 10 times as much of these chemicals added to the water before they started fanning their eggs more frequently. Some fish have also demonstrated having trouble picking up on chemical cues in more acidic water. In one study, juvenile pink salmon seemed less attuned to chemical cues and less able to avoid predators. Gilthead seabreama commonly eaten European fishhave shown a similar trend . Many of these experiments tested levels of ocean acidification that could be widespread by the end of the century if the world hits extreme climate-change projections. But with coastal upwelling, a process that can bring acidic deep-ocean water to the surface, some coastal environments already occasionally see higher levels of acidification. And even if future carbon emissions are reined in, the whole ocean will still grow more acidic than it is now. Individual species will likely have different thresholds at which the increasing acidity suddenly derails their ability to detect certain chemicals, Hardege says, and scientists dont yet know what those thresholds might be. Christina Roggatz, a marine-chemical ecologist at the University of Bremen, in Germany, notes that acidification does not always reduce animals sensitivity to chemicals. For example, one study she co-authored found that in more acidic water, hermit crabs seem to be even more attracted to a particular chemical cue. Read: Things dont always change in a nice, gradual way But with some cues growing stronger and others growing weaker, widespread acidification could upend the balance of chemical communication in the ocean, Roggatz says. This is on top of the other, more overtly threatening consequences of changing marine chemistry. In a particularly frightening case, Roggatz discovered that a combination of increasing acidity and rising temperatures actually increases the toxicities of saxitoxin, a potent neurotoxin from contaminated shellfish, and tetrodotoxin, produced by pufferfish, blue-ringed octopuses, and other animals. Research into acidifications potential to disrupt underwater chemical communication and sensory perception is really just getting started. Last year, Hardege, Roggatz, and others wrote a paper urging researchers such as chemists and ecologists to unravel what these changes could mean. It is possible, Hardege says, that wildlife could adapt to the changing chemical environment. The signal of nearby food, for instance, isnt often one chemical, but an array of chemicals. Even if a species can no longer detect one of those chemicals, it might still be able to detect the others. Or it might turn to its other senses, like vision. Of course, its best if we dont put that to the test. The best way to protect marine ecosystems from ocean acidification is to limit acidification, Roggatz says. If we can buy time by reducing the carbon-dioxide amounts we emit substantially, Roggatz says, I think that is the solution.